Proton energy loss measurements in high-density, low temperature plasma

H. Chen, S. Chen, R. Shepherd, F. Graziani, M. Dorr, E. Draeger, J-L Fattebert, F. Streitz, W. Krauss, R. van Maren, L. Benedict, J. Dunn, J. Glosli, S. Hau-Riege, D. Richards, N. Rohringer, R. Soufli, F. Streitz, M. Surh, B. Langdon, R. London (LLNL), M. Murillo (LANL), J. Fuchs, M. Gauthier, H. Chen, P. Audebert, (LULI/Ecole Polytechnique), M. Purvis, J. Rocca (Colorado State U.), Sam Feldman, Gilliss Dyer, Todd Ditmire (University of Texas), A. Hazi (ret), R. More LLNL (ret), J. Weisheit (University of Pittsburgh),

Outline

- Goal and motivation
- Description of experiment
- Pre –experiment simulations
- Data and analysis
 - Heated targets:
- Conclusion
 - What's next (?)

Motivation: Even today, modeling and understanding stopping is challenging

There are many considerations when calculating charged particle energy loss in dense plasmas

$$\frac{dE}{dx} = \frac{Z_b^2 e^2}{\pi v^2} \int_0^\infty \frac{dk}{k} \int_{\hbar k^2/2m_b - kv}^{\hbar k^2/2m_b + kv} \left[\omega - \frac{\hbar^2 k^2}{2m_b}\right] \Im \varepsilon^{-1}(k, \omega) n_B(\omega)$$

(dynamic Born)

Basic idea: For a given proton energy, determine energy loss as a function of target thickness

- Idea is simple;
 - Measure the relative change in energy as a function of target thickness
 - Characterize proton beam before entering target and after passing through target
 - Measure plasma temperature and density
 - Ideally as a function of space and time
 - Determine time dependent ionization balance

Execution is very hard

Plan: Use short pulse laser generated protons to heat sample and short pulse laser generated protons to measure energy loss

- Basic concept of experiment:
 - Short pulse laser generated protons have a short pulse duration.
 They also have a long mean free path. Thus they are a good candidate for volumetric heating of material.
 - This minimizes hydrodynamic expansion and spatial gradients during the stopping measurement
 - The short proton pulse duration allows one to probe during a snap-shot of the plasma characteristics
 - o TITAN
 - o LULI

To look at proton heating of material, we have used the simulation code HYDRA

The physical assumptions for proton energy loss in solid material using HYDRA: From Tom Kaiser, Gary Kerbel, Manoj Prasad, HYDRA uses the following assumptions:

Classical Ion Beam Energy Loss

$$\begin{split} -\frac{dE}{dx} &= \left[\frac{4\pi e^4}{m_e c^2}\right] \left[\frac{N_e \rho_T}{A_T}\right] \left[\frac{Z_{eV}^4}{\beta^2}\right] \left\{ (Z_T - \overline{Z}) \log \Lambda_0 + \overline{Z} \operatorname{G}(\beta / \beta_e) \log \Lambda_e \right\} \\ \rho_T &= \text{target density in } g / cm^3, \ A_T = \text{target atomic weight} \\ Z_T &= \text{target atomic number, } \overline{Z} = \text{target ionization state} \\ \Lambda_S &= \frac{2m_e c^2 \beta^2}{I}, \ \Lambda_F = \frac{m_e c^2 \beta^2}{\hbar \omega_p}, \ \operatorname{G}(x) = \operatorname{erf}(x) - x \operatorname{erf}'(x) \approx 1 \text{ for } x >> 1 \\ \overline{I} &= \text{average ionization potential} \approx .01 Z_T \operatorname{keV} \text{ (Bloch's rute)} \end{split}$$

 $I = \text{average ionization potential} \approx .01Z_r \text{ keV}$ (Bloch's rule) $\omega_r = \text{plasma frequency} = \sqrt{4\pi e^2 n_r / m_r} = 56416 \sqrt{n_r} / \text{sec}$

 $\hbar\omega_{\rm p}=(3.7e-14)\sqrt{n_e}~keV~,~n_e={\rm electron~density~in}~1/cm^3=\overline{Z}N_{\rm o}\rho_T/A_F$

Ion Beam : $\beta = v/c$, $\gamma = \frac{1}{\sqrt{1-\beta^2}} = 1 + \frac{E}{Mc^2}$

E = Kinetic Energy of Ion Beam in keV,

 Mc^2 = Ion Beam Rest Energy = $A_{toolbeam}$ (9.3e5) keV

 $m_e c^2 = \text{Electron Rost Energy} = 511 \, keV$

Betz Empirical $Z_{eff} = Z_{hollimit} \left[1 - \exp(-137 \beta_{eff} / Z_{hollimit}^{A0}) \right]$

 $\beta_{eff}^2 \equiv \beta^2 + \beta_r^2$, with $\gamma_r = \frac{1}{\sqrt{1 - \beta_r^2}} = 1 + \frac{kT_r}{m_r c^2}$

Relativist in Correction : Log $\Lambda_R \to \text{Log } \Lambda_R + R$, Log $\Lambda_F \to \text{Log } \Lambda_F + R/2$ where $R = 2 \text{ Log } \gamma - \beta^2$

Ion Beam Power Deposition Algorithm

- Rectilinear Ion Beam trajectory (No Refraction!): $\frac{d^2\bar{x}}{dt^2} = 0$
- Get path length s traversed in cell
- · Compute absorbed power in cell
- Neglect Energy Straggling

For each cell traversed by Ion Beam:

Energy Change: $E^{new} = MAX (0, E^{old} - \int_{0}^{s} |dE/dx|^{old} dx)$

Power Change : $P^{new} = P^{old} \frac{E^{new}}{E^{old}}$

Absorbed Power: $P^{abs} = P^{old} - P^{new}$

Various Floors for "dump all" ion beam absorption :

If $(P^{new} < MAX (.01 * P^{old}, 1.e - 4 * P^{original})) P^{new} = 0;$

If $(E^{new} < A_{lonBeam} * MAX (eflr, xflr * kT_e))E^{new} = 0$; $eflr \approx 30, xflr \approx 3$

Comparison of 3 spectrums

0.1MeV-30MeV analytical

0.01MeV-30MeV analytical

0.01MeV-2.5MeV Flat with 2.5MeV-30MeV analytical

Reproduction of Andy Hazi's figure

Fraction of the total pulse energy for a given proton energy.

Physical SCIENCES and Life SCIENCES

A HYDRA input

Comparison of proton energy: 1J, 200mJ, 100mJ

Option:UCRL#

10μm C target with a FLAT/Analytical proton beam focused to 50 μm diam

Experimental layout

- Protons heat edge-on
 - Typical heating energy~130 J
 - Typical probe energy~20 J
- Proton spectrometer measures heating spectrum
 - Spectrum is used to infer temperature
- FDI measures expansion of critical surface
 - Expansion velocity is used to infer temperature

Experiment: Our first stopping power experiment was performed at the TITAN laser facility

Methodology: Use Fourier domain interferometry to determine the target characteristics

Option:UCRL#

11.5 um thick Carbon foil probed at 50 um from the heated surface

Option:UCRL#

Time(ps)

Time

Post processed data showing phase change due to heated carbon expansion

Code hydro 1D ESTHER

Code hydro 1D ESTHER showing the calculated phase change in case of carbon put at different temperatures (not proton heated).

The ionization dynamics of the carbon is critical to understanding the stopping power

$$\begin{split} S &= \sum_{n} B \Big[\Big(1 - \overline{Z}/Z_{a} \Big) \ln \Lambda_{_{bn}} \Big] + \Big(\overline{Z}/Z_{_{a}} \Big) \ln \Lambda_{_{f}} \\ B &= 4\pi e^{4} N Z_{_{a}}/m V^{_{2}} \;, \; \Lambda_{_{bn}} = 2m V^{_{2}}/I_{_{zn}} \;, \; \Lambda_{_{f}} = 2m V^{_{2}}/I_{_{f}} \;, \; Z_{_{a}} = atomic \; number \\ N &= plasma \; density, \; V = proton \; velocity, \; \overline{Z} = average \; ionization \\ I_{_{zn}} &= ionization \; potential, \; I_{_{f}} = \overline{Z}e^{^{2}}/\lambda_{_{D}} \end{split}$$

- Ionization balance calculated using FLYCHK
 - Solid density
 - Stewart-Pyatt continuum lowering
- •The bound electron stopping is dominated by the C²⁺ charge state.
 - For our plasma we have:

$$\Gamma_{ii} \approx 5$$
, $\Gamma_{ie} \approx 2$, $\vartheta_{Fermi} \approx 0.84$

Free electron stopping is in a partially degenerate gas

Energy loss simulations have been performed using our proton spectrum as the source function

- Simulation performed with SRIM
- Uses Bethe-Bloch for dE/dx
- Effects are most significant below 0.7 MeV

Conclusion

- Data reduction is still on-going, however preliminary data reduction have resulted in some observations:
 - 1. Target charging makes wedge proton data difficult to unfold.
 - 2. "Cold" carbon data shows larger energy loss than anticipated.
 - 3. Rough comparison with heated target data suggest an enhanced dE/dx for heated versus cold cases (see next bullet).
 - 4. Temperature data suggest stopping is dominated by C⁺² and partially degenerate free electrons
- We are continuing with data reduction. Our next experiment is in March 2011 (possibly something sooner at U. of Texas).

